\(\int \frac {\tanh ^5(x)}{(a+b \tanh ^2(x))^{3/2}} \, dx\) [238]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 72 \[ \int \frac {\tanh ^5(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}-\frac {a^2}{b^2 (a+b) \sqrt {a+b \tanh ^2(x)}}-\frac {\sqrt {a+b \tanh ^2(x)}}{b^2} \]

[Out]

arctanh((a+b*tanh(x)^2)^(1/2)/(a+b)^(1/2))/(a+b)^(3/2)-a^2/b^2/(a+b)/(a+b*tanh(x)^2)^(1/2)-(a+b*tanh(x)^2)^(1/
2)/b^2

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {3751, 457, 89, 65, 214} \[ \int \frac {\tanh ^5(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=-\frac {a^2}{b^2 (a+b) \sqrt {a+b \tanh ^2(x)}}+\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}-\frac {\sqrt {a+b \tanh ^2(x)}}{b^2} \]

[In]

Int[Tanh[x]^5/(a + b*Tanh[x]^2)^(3/2),x]

[Out]

ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]]/(a + b)^(3/2) - a^2/(b^2*(a + b)*Sqrt[a + b*Tanh[x]^2]) - Sqrt[a +
b*Tanh[x]^2]/b^2

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 89

Int[(((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_))/((a_.) + (b_.)*(x_)), x_Symbol] :> Int[ExpandIntegr
and[(e + f*x)^FractionalPart[p], (c + d*x)^n*((e + f*x)^IntegerPart[p]/(a + b*x)), x], x] /; FreeQ[{a, b, c, d
, e, f}, x] && IGtQ[n, 0] && LtQ[p, -1] && FractionQ[p]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {x^5}{\left (1-x^2\right ) \left (a+b x^2\right )^{3/2}} \, dx,x,\tanh (x)\right ) \\ & = \frac {1}{2} \text {Subst}\left (\int \frac {x^2}{(1-x) (a+b x)^{3/2}} \, dx,x,\tanh ^2(x)\right ) \\ & = \frac {1}{2} \text {Subst}\left (\int \left (\frac {a^2}{b (a+b) (a+b x)^{3/2}}-\frac {1}{b \sqrt {a+b x}}-\frac {1}{(a+b) (-1+x) \sqrt {a+b x}}\right ) \, dx,x,\tanh ^2(x)\right ) \\ & = -\frac {a^2}{b^2 (a+b) \sqrt {a+b \tanh ^2(x)}}-\frac {\sqrt {a+b \tanh ^2(x)}}{b^2}-\frac {\text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+b x}} \, dx,x,\tanh ^2(x)\right )}{2 (a+b)} \\ & = -\frac {a^2}{b^2 (a+b) \sqrt {a+b \tanh ^2(x)}}-\frac {\sqrt {a+b \tanh ^2(x)}}{b^2}-\frac {\text {Subst}\left (\int \frac {1}{-1-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tanh ^2(x)}\right )}{b (a+b)} \\ & = \frac {\text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}-\frac {a^2}{b^2 (a+b) \sqrt {a+b \tanh ^2(x)}}-\frac {\sqrt {a+b \tanh ^2(x)}}{b^2} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.13 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.93 \[ \int \frac {\tanh ^5(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\frac {-b^2 \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {a+b \tanh ^2(x)}{a+b}\right )-(a+b) \left (2 a-b+b \tanh ^2(x)\right )}{b^2 (a+b) \sqrt {a+b \tanh ^2(x)}} \]

[In]

Integrate[Tanh[x]^5/(a + b*Tanh[x]^2)^(3/2),x]

[Out]

(-(b^2*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tanh[x]^2)/(a + b)]) - (a + b)*(2*a - b + b*Tanh[x]^2))/(b^2*(a
+ b)*Sqrt[a + b*Tanh[x]^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(321\) vs. \(2(62)=124\).

Time = 0.10 (sec) , antiderivative size = 322, normalized size of antiderivative = 4.47

method result size
derivativedivides \(\frac {1}{b \sqrt {a +b \tanh \left (x \right )^{2}}}-\frac {\tanh \left (x \right )^{2}}{b \sqrt {a +b \tanh \left (x \right )^{2}}}-\frac {2 a}{b^{2} \sqrt {a +b \tanh \left (x \right )^{2}}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {b \left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right )}{\left (a +b \right ) \left (4 \left (a +b \right ) b -4 b^{2}\right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}-\frac {b \left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right )}{\left (a +b \right ) \left (4 \left (a +b \right ) b -4 b^{2}\right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}\) \(322\)
default \(\frac {1}{b \sqrt {a +b \tanh \left (x \right )^{2}}}-\frac {\tanh \left (x \right )^{2}}{b \sqrt {a +b \tanh \left (x \right )^{2}}}-\frac {2 a}{b^{2} \sqrt {a +b \tanh \left (x \right )^{2}}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {b \left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right )}{\left (a +b \right ) \left (4 \left (a +b \right ) b -4 b^{2}\right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}-\frac {b \left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right )}{\left (a +b \right ) \left (4 \left (a +b \right ) b -4 b^{2}\right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}\) \(322\)

[In]

int(tanh(x)^5/(a+b*tanh(x)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/b/(a+b*tanh(x)^2)^(1/2)-tanh(x)^2/b/(a+b*tanh(x)^2)^(1/2)-2*a/b^2/(a+b*tanh(x)^2)^(1/2)-1/2/(a+b)/(b*(tanh(x
)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)+b/(a+b)*(2*b*(tanh(x)-1)+2*b)/(4*(a+b)*b-4*b^2)/(b*(tanh(x)-1)^2+2*b*(tanh(x
)-1)+a+b)^(1/2)+1/2/(a+b)^(3/2)*ln((2*a+2*b+2*b*(tanh(x)-1)+2*(a+b)^(1/2)*(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b
)^(1/2))/(tanh(x)-1))-1/2/(a+b)/(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)-b/(a+b)*(2*b*(1+tanh(x))-2*b)/(4*(
a+b)*b-4*b^2)/(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)+1/2/(a+b)^(3/2)*ln((2*a+2*b-2*b*(1+tanh(x))+2*(a+b)^
(1/2)*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))/(1+tanh(x)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1713 vs. \(2 (62) = 124\).

Time = 0.49 (sec) , antiderivative size = 3991, normalized size of antiderivative = 55.43 \[ \int \frac {\tanh ^5(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/4*(((a*b^2 + b^3)*cosh(x)^6 + 6*(a*b^2 + b^3)*cosh(x)*sinh(x)^5 + (a*b^2 + b^3)*sinh(x)^6 + (3*a*b^2 - b^3)
*cosh(x)^4 + (3*a*b^2 - b^3 + 15*(a*b^2 + b^3)*cosh(x)^2)*sinh(x)^4 + 4*(5*(a*b^2 + b^3)*cosh(x)^3 + (3*a*b^2
- b^3)*cosh(x))*sinh(x)^3 + a*b^2 + b^3 + (3*a*b^2 - b^3)*cosh(x)^2 + (15*(a*b^2 + b^3)*cosh(x)^4 + 3*a*b^2 -
b^3 + 6*(3*a*b^2 - b^3)*cosh(x)^2)*sinh(x)^2 + 2*(3*(a*b^2 + b^3)*cosh(x)^5 + 2*(3*a*b^2 - b^3)*cosh(x)^3 + (3
*a*b^2 - b^3)*cosh(x))*sinh(x))*sqrt(a + b)*log(((a^3 + a^2*b)*cosh(x)^8 + 8*(a^3 + a^2*b)*cosh(x)*sinh(x)^7 +
 (a^3 + a^2*b)*sinh(x)^8 + 2*(2*a^3 + a^2*b)*cosh(x)^6 + 2*(2*a^3 + a^2*b + 14*(a^3 + a^2*b)*cosh(x)^2)*sinh(x
)^6 + 4*(14*(a^3 + a^2*b)*cosh(x)^3 + 3*(2*a^3 + a^2*b)*cosh(x))*sinh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*c
osh(x)^4 + (70*(a^3 + a^2*b)*cosh(x)^4 + 6*a^3 + 4*a^2*b - a*b^2 + b^3 + 30*(2*a^3 + a^2*b)*cosh(x)^2)*sinh(x)
^4 + 4*(14*(a^3 + a^2*b)*cosh(x)^5 + 10*(2*a^3 + a^2*b)*cosh(x)^3 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x))*s
inh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 + 2*(2*a^3 + 3*a^2*b - b^3)*cosh(x)^2 + 2*(14*(a^3 + a^2*b)*cosh(x)^6
 + 15*(2*a^3 + a^2*b)*cosh(x)^4 + 2*a^3 + 3*a^2*b - b^3 + 3*(6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^2)*sinh(x)
^2 + sqrt(2)*(a^2*cosh(x)^6 + 6*a^2*cosh(x)*sinh(x)^5 + a^2*sinh(x)^6 + 3*a^2*cosh(x)^4 + 3*(5*a^2*cosh(x)^2 +
 a^2)*sinh(x)^4 + 4*(5*a^2*cosh(x)^3 + 3*a^2*cosh(x))*sinh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x)^2 + (15*a^2*co
sh(x)^4 + 18*a^2*cosh(x)^2 + 3*a^2 + 2*a*b - b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(3*a^2*cosh(x)^5 + 6*a^2*c
osh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a
 - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + a^2*b)*cosh(x)^7 + 3*(2*a^3 + a^2*b)*cosh(x)^
5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^3 + (2*a^3 + 3*a^2*b - b^3)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(
x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5
+ sinh(x)^6)) + ((a*b^2 + b^3)*cosh(x)^6 + 6*(a*b^2 + b^3)*cosh(x)*sinh(x)^5 + (a*b^2 + b^3)*sinh(x)^6 + (3*a*
b^2 - b^3)*cosh(x)^4 + (3*a*b^2 - b^3 + 15*(a*b^2 + b^3)*cosh(x)^2)*sinh(x)^4 + 4*(5*(a*b^2 + b^3)*cosh(x)^3 +
 (3*a*b^2 - b^3)*cosh(x))*sinh(x)^3 + a*b^2 + b^3 + (3*a*b^2 - b^3)*cosh(x)^2 + (15*(a*b^2 + b^3)*cosh(x)^4 +
3*a*b^2 - b^3 + 6*(3*a*b^2 - b^3)*cosh(x)^2)*sinh(x)^2 + 2*(3*(a*b^2 + b^3)*cosh(x)^5 + 2*(3*a*b^2 - b^3)*cosh
(x)^3 + (3*a*b^2 - b^3)*cosh(x))*sinh(x))*sqrt(a + b)*log(-((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 +
(a + b)*sinh(x)^4 - 2*b*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 - b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sin
h(x) + sinh(x)^2 - 1)*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*
sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 - b*cosh(x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + si
nh(x)^2)) - 4*sqrt(2)*((2*a^3 + 4*a^2*b + 3*a*b^2 + b^3)*cosh(x)^4 + 4*(2*a^3 + 4*a^2*b + 3*a*b^2 + b^3)*cosh(
x)*sinh(x)^3 + (2*a^3 + 4*a^2*b + 3*a*b^2 + b^3)*sinh(x)^4 + 2*a^3 + 4*a^2*b + 3*a*b^2 + b^3 + 2*(2*a^3 + 2*a^
2*b - a*b^2 - b^3)*cosh(x)^2 + 2*(2*a^3 + 2*a^2*b - a*b^2 - b^3 + 3*(2*a^3 + 4*a^2*b + 3*a*b^2 + b^3)*cosh(x)^
2)*sinh(x)^2 + 4*((2*a^3 + 4*a^2*b + 3*a*b^2 + b^3)*cosh(x)^3 + (2*a^3 + 2*a^2*b - a*b^2 - b^3)*cosh(x))*sinh(
x))*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^3*b
^2 + 3*a^2*b^3 + 3*a*b^4 + b^5)*cosh(x)^6 + 6*(a^3*b^2 + 3*a^2*b^3 + 3*a*b^4 + b^5)*cosh(x)*sinh(x)^5 + (a^3*b
^2 + 3*a^2*b^3 + 3*a*b^4 + b^5)*sinh(x)^6 + a^3*b^2 + 3*a^2*b^3 + 3*a*b^4 + b^5 + (3*a^3*b^2 + 5*a^2*b^3 + a*b
^4 - b^5)*cosh(x)^4 + (3*a^3*b^2 + 5*a^2*b^3 + a*b^4 - b^5 + 15*(a^3*b^2 + 3*a^2*b^3 + 3*a*b^4 + b^5)*cosh(x)^
2)*sinh(x)^4 + 4*(5*(a^3*b^2 + 3*a^2*b^3 + 3*a*b^4 + b^5)*cosh(x)^3 + (3*a^3*b^2 + 5*a^2*b^3 + a*b^4 - b^5)*co
sh(x))*sinh(x)^3 + (3*a^3*b^2 + 5*a^2*b^3 + a*b^4 - b^5)*cosh(x)^2 + (3*a^3*b^2 + 5*a^2*b^3 + a*b^4 - b^5 + 15
*(a^3*b^2 + 3*a^2*b^3 + 3*a*b^4 + b^5)*cosh(x)^4 + 6*(3*a^3*b^2 + 5*a^2*b^3 + a*b^4 - b^5)*cosh(x)^2)*sinh(x)^
2 + 2*(3*(a^3*b^2 + 3*a^2*b^3 + 3*a*b^4 + b^5)*cosh(x)^5 + 2*(3*a^3*b^2 + 5*a^2*b^3 + a*b^4 - b^5)*cosh(x)^3 +
 (3*a^3*b^2 + 5*a^2*b^3 + a*b^4 - b^5)*cosh(x))*sinh(x)), -1/2*(((a*b^2 + b^3)*cosh(x)^6 + 6*(a*b^2 + b^3)*cos
h(x)*sinh(x)^5 + (a*b^2 + b^3)*sinh(x)^6 + (3*a*b^2 - b^3)*cosh(x)^4 + (3*a*b^2 - b^3 + 15*(a*b^2 + b^3)*cosh(
x)^2)*sinh(x)^4 + 4*(5*(a*b^2 + b^3)*cosh(x)^3 + (3*a*b^2 - b^3)*cosh(x))*sinh(x)^3 + a*b^2 + b^3 + (3*a*b^2 -
 b^3)*cosh(x)^2 + (15*(a*b^2 + b^3)*cosh(x)^4 + 3*a*b^2 - b^3 + 6*(3*a*b^2 - b^3)*cosh(x)^2)*sinh(x)^2 + 2*(3*
(a*b^2 + b^3)*cosh(x)^5 + 2*(3*a*b^2 - b^3)*cosh(x)^3 + (3*a*b^2 - b^3)*cosh(x))*sinh(x))*sqrt(-a - b)*arctan(
sqrt(2)*(a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 + a + b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a +
b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh
(x)*sinh(x)^3 + (a^2 + a*b)*sinh(x)^4 + (2*a^2 + a*b - b^2)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 + 2*a^2 + a*b
 - b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(2*(a^2 + a*b)*cosh(x)^3 + (2*a^2 + a*b - b^2)*cosh(x))*sinh(x))) +
((a*b^2 + b^3)*cosh(x)^6 + 6*(a*b^2 + b^3)*cosh(x)*sinh(x)^5 + (a*b^2 + b^3)*sinh(x)^6 + (3*a*b^2 - b^3)*cosh(
x)^4 + (3*a*b^2 - b^3 + 15*(a*b^2 + b^3)*cosh(x)^2)*sinh(x)^4 + 4*(5*(a*b^2 + b^3)*cosh(x)^3 + (3*a*b^2 - b^3)
*cosh(x))*sinh(x)^3 + a*b^2 + b^3 + (3*a*b^2 - b^3)*cosh(x)^2 + (15*(a*b^2 + b^3)*cosh(x)^4 + 3*a*b^2 - b^3 +
6*(3*a*b^2 - b^3)*cosh(x)^2)*sinh(x)^2 + 2*(3*(a*b^2 + b^3)*cosh(x)^5 + 2*(3*a*b^2 - b^3)*cosh(x)^3 + (3*a*b^2
 - b^3)*cosh(x))*sinh(x))*sqrt(-a - b)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(-a
- b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b
)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 +
 a - b)*sinh(x)^2 + 4*((a + b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) + a + b)) + 2*sqrt(2)*((2*a^3 + 4*a^2*b +
3*a*b^2 + b^3)*cosh(x)^4 + 4*(2*a^3 + 4*a^2*b + 3*a*b^2 + b^3)*cosh(x)*sinh(x)^3 + (2*a^3 + 4*a^2*b + 3*a*b^2
+ b^3)*sinh(x)^4 + 2*a^3 + 4*a^2*b + 3*a*b^2 + b^3 + 2*(2*a^3 + 2*a^2*b - a*b^2 - b^3)*cosh(x)^2 + 2*(2*a^3 +
2*a^2*b - a*b^2 - b^3 + 3*(2*a^3 + 4*a^2*b + 3*a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + 4*((2*a^3 + 4*a^2*b + 3*a*b
^2 + b^3)*cosh(x)^3 + (2*a^3 + 2*a^2*b - a*b^2 - b^3)*cosh(x))*sinh(x))*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh
(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^3*b^2 + 3*a^2*b^3 + 3*a*b^4 + b^5)*cosh(x)^6
+ 6*(a^3*b^2 + 3*a^2*b^3 + 3*a*b^4 + b^5)*cosh(x)*sinh(x)^5 + (a^3*b^2 + 3*a^2*b^3 + 3*a*b^4 + b^5)*sinh(x)^6
+ a^3*b^2 + 3*a^2*b^3 + 3*a*b^4 + b^5 + (3*a^3*b^2 + 5*a^2*b^3 + a*b^4 - b^5)*cosh(x)^4 + (3*a^3*b^2 + 5*a^2*b
^3 + a*b^4 - b^5 + 15*(a^3*b^2 + 3*a^2*b^3 + 3*a*b^4 + b^5)*cosh(x)^2)*sinh(x)^4 + 4*(5*(a^3*b^2 + 3*a^2*b^3 +
 3*a*b^4 + b^5)*cosh(x)^3 + (3*a^3*b^2 + 5*a^2*b^3 + a*b^4 - b^5)*cosh(x))*sinh(x)^3 + (3*a^3*b^2 + 5*a^2*b^3
+ a*b^4 - b^5)*cosh(x)^2 + (3*a^3*b^2 + 5*a^2*b^3 + a*b^4 - b^5 + 15*(a^3*b^2 + 3*a^2*b^3 + 3*a*b^4 + b^5)*cos
h(x)^4 + 6*(3*a^3*b^2 + 5*a^2*b^3 + a*b^4 - b^5)*cosh(x)^2)*sinh(x)^2 + 2*(3*(a^3*b^2 + 3*a^2*b^3 + 3*a*b^4 +
b^5)*cosh(x)^5 + 2*(3*a^3*b^2 + 5*a^2*b^3 + a*b^4 - b^5)*cosh(x)^3 + (3*a^3*b^2 + 5*a^2*b^3 + a*b^4 - b^5)*cos
h(x))*sinh(x))]

Sympy [F]

\[ \int \frac {\tanh ^5(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\int \frac {\tanh ^{5}{\left (x \right )}}{\left (a + b \tanh ^{2}{\left (x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(tanh(x)**5/(a+b*tanh(x)**2)**(3/2),x)

[Out]

Integral(tanh(x)**5/(a + b*tanh(x)**2)**(3/2), x)

Maxima [F]

\[ \int \frac {\tanh ^5(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\int { \frac {\tanh \left (x\right )^{5}}{{\left (b \tanh \left (x\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(tanh(x)^5/(b*tanh(x)^2 + a)^(3/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 460 vs. \(2 (62) = 124\).

Time = 0.57 (sec) , antiderivative size = 460, normalized size of antiderivative = 6.39 \[ \int \frac {\tanh ^5(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=-\frac {\frac {{\left (a^{4} b + a^{3} b^{2}\right )} e^{\left (2 \, x\right )}}{a^{3} b^{3} + 2 \, a^{2} b^{4} + a b^{5}} + \frac {a^{4} b + a^{3} b^{2}}{a^{3} b^{3} + 2 \, a^{2} b^{4} + a b^{5}}}{\sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}} - \frac {\log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{2 \, {\left (a + b\right )}^{\frac {3}{2}}} + \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right )}{2 \, {\left (a + b\right )}^{\frac {3}{2}}} - \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right )}{2 \, {\left (a + b\right )}^{\frac {3}{2}}} - \frac {4 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b}\right )}}{{\left ({\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} + 2 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} \sqrt {a + b} + a - 3 \, b\right )} b} \]

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(3/2),x, algorithm="giac")

[Out]

-((a^4*b + a^3*b^2)*e^(2*x)/(a^3*b^3 + 2*a^2*b^4 + a*b^5) + (a^4*b + a^3*b^2)/(a^3*b^3 + 2*a^2*b^4 + a*b^5))/s
qrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) - 1/2*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^
(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*(a + b) - sqrt(a + b)*(a - b)))/(a + b)^(3/2) + 1/2*lo
g(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b)))/(
a + b)^(3/2) - 1/2*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a +
 b) - sqrt(a + b)))/(a + b)^(3/2) - 4*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^
(2*x) + a + b) - sqrt(a + b))/(((sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x)
+ a + b))^2 + 2*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*sqrt(a
 + b) + a - 3*b)*b)

Mupad [B] (verification not implemented)

Time = 3.04 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.97 \[ \int \frac {\tanh ^5(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\frac {\mathrm {atanh}\left (\frac {\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}\,\left (2\,a+2\,b\right )}{2\,{\left (a+b\right )}^{3/2}}\right )}{{\left (a+b\right )}^{3/2}}-\frac {\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}}{b^2}-\frac {a^2}{b^2\,\left (a+b\right )\,\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}} \]

[In]

int(tanh(x)^5/(a + b*tanh(x)^2)^(3/2),x)

[Out]

atanh(((a + b*tanh(x)^2)^(1/2)*(2*a + 2*b))/(2*(a + b)^(3/2)))/(a + b)^(3/2) - (a + b*tanh(x)^2)^(1/2)/b^2 - a
^2/(b^2*(a + b)*(a + b*tanh(x)^2)^(1/2))